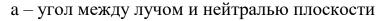
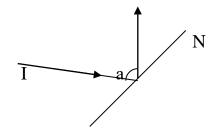
Лабораторная работа № 4

« Светотехнический расчет точечным методом

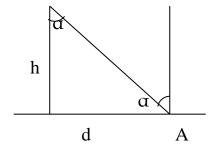
при помощи лам накаливания

<u>**Цель работы:**</u> Произвести расчет точечным методом в соответствии с вариантами.


Краткие теоретические сведения.


Освещённость точки произвольно расположенной поверхности от точеного излучателя выражается по формуле:

$$E = \frac{I * \cos a}{r^2}$$


r – расстояние до точки

Освещённость точки горизонтальной плоскости от точенного излучателя при известной высоте излучателя над точкой определяется по формуле

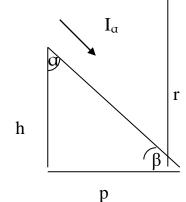
$$E_2 = \frac{I_a * \cos^3 a}{h^2}$$

$$E_{zop} = \frac{I_n * \cos a}{r^2} = \frac{I_a * \cos^3 a}{r^2}$$

$$r = \frac{h}{\cos a} = \frac{d}{\sin a}$$

где I_a — сила света светильника по направлению луча

 α — угол между осью симметрии светильника и направлением луча или между нормалью поверхности направленного луча


h – высота светильника над горизонтальной поверхностью

d – расстояние проекции светильника на горизонтальную плоскость до рассматриваемого места(точки).

Освещённость точки вертикальной плоскости от точеного излучателя определяется по формуле

Где I_{α} - сила света светильника по направлению луча

а - угол между осью симметрии светильника и направлением луча, или между нормалью поверхности и направлением луча.

h - расстояние проекции светильника на вертикальную плоскость до рассматриваемой точки.

р - расстояние от оси симметрии светильника до вертикальной плоскости.

$$E_{eepm} = E_{zop} * \frac{p}{h}$$

Для точеного расчёта принимается, что поток лампы (при многоламповых светильниках – суммарный поток) в каждом светильнике равен 1000 лм. Создаваемая в этом случае освещённость называется условной и обозначается буквой «е».

определяется по формуле

$$E_{zop} = \frac{F_{_{1}} * \mu * \sum_{l} lz}{1000 * K_{_{3}}}$$

где F_π – световой поток одной лампы

∑lг - условная суммарная горизонтальная освещённость от ближайших светильников определённая по пространственным изолюксам условной горизонтальной освещённости в системе координат h и d; лк

 K_3 – коэффициент запаса, равный для ламп накаливания 1.3, для газоразрядных ламп ДРЛ 1.5

Световой поток лампы определяется:

$$F_{_{n}} = \frac{1000 * K_{_{3}} * E_{_{MUH}}}{\mu * \sum l2}$$

Для определения фактической освещённости вертикальной поверхности необходимо условную горизонтальную освещённость каждого светильника определённую по пространственным изолюксам умножить на отношение d/h для каждого светильника, тогда условная суммарная вертикальная освещённость определяется по формуле

$$\sum le = l_{2.1} \frac{d_1}{h_1} + l_{2.2} \frac{d_2}{h_2} + l_{2.3} \frac{d_3}{h_3} + \dots + l_{2.n} \frac{d_{n1}}{h_n}$$

Фактическая освещённость вертикальной рабочей поверхности определяется по формуле

$$F_{eepm} = \frac{F_{_{B}} * \mu * \sum_{l} lz}{1000 * K_{_{3}}}$$

Световой поток одной лампы F_{π} при заданной минимальной освещённости определяется по формуле

$$F_{_{\pi}} = \frac{1000 * K_{_{3}} * E_{_{MUH}}}{\mu * \sum l \varepsilon}$$

Последовательности выполнения расчёта точеным методом для ламп накаливания и ДРЛ.

- 1. По исходным данным рисуем помещения в масштабе и размещённые на данном плане светильники.
- 2. Определяем контрольные точки.

- 3. Масштабной линейкой определяем расстояние от проекции светильников на горизонтальную плоскость до контрольных точек.
- 4. По пространственным изолюксам условной горизонтальной освещённости при заданном типе светильника определяем условную горизонтальную освещённость
- 5. Если требуется определить вертикальную освещённость, то необходимо для каждого светильника в зависимости от его удалённости от контрольной точки произвести перерасчёт по формуле

$$l_{B.n} = l_{2.n} \frac{d_n}{h_n}$$

- 6. Определить общую условную горизонтальную или вертикальную освещённость проверяемой точки $\sum l_B$ и $\sum l_r$
- 7. Определить световой поток одной лампы при заданной минимальной освещённости по формуле

$$F_{_{n}} = \frac{K_{_{3}} * E_{_{MUH}} * 1000}{\mu * \sum_{l} l}$$

8. Определить освещённость в данной точке при заданном световом потоке одной лампы по формуле

$$E = \frac{F_{n} * \mu * \sum_{l} l}{1000 * K_{3}}$$

По таблицам светотехнических характеристик ламп накаливания выбираем лампу

Пример. Светильники Уз с рассеивателями расположены, как показано на рис. , и установлены на высоте 3.0 м над рабочими столами, на которых необходимо обеспечить E = 75 лк при $\kappa = 1.3$.

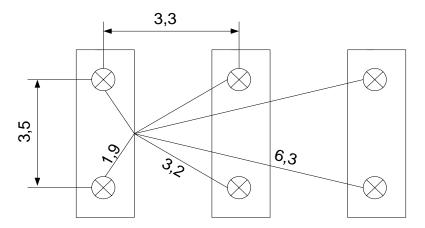


рис. 18. к примеру расчёта освещения.

По рис. 11 для каждого указанного на рис. 18 значений d находим:

$$d = 1.9$$
, $e = 10лк$

$$d = 3,2$$
, $e = 4,5$ лк

$$d = 6.3$$
, $e = 0.7$ лк

Очевидно,
$$\Sigma e = 2*(10+4,5+0,7) = 30,4.$$
лк

Принимая $\mu=1,1$, находим:

$$F = \frac{1000 * 75 * 1,3}{1,1 * 30,4} = 2930 \,\text{лм}$$

Принимаем лампу 200 Вт, 220 В, 2920 лм.

Для расчета горизонтальной поверхности заполняется таблица 1

Для горизонтальных точек

Точка	n	номера	д ,м	e_{r} , лк	пе	
	ШТ	светильник.			ЛК	
A	2	3.6	2	7.5	15.0	
$h=h_n-h_p=$	2	2.5	4.6	3.0	6.0	
=5.0-0.5=4.5	2	1.4	8.4	1.0	2.0	
Σe_{r} =23.0лк						
Б	4	2,3,5,6	2.8	6.0	24.0	
$h=h_n - h_p=$	2	1,4	6.4	1.4	2.8	
=5.0-0.5=4.5						
∑е₁=26.8лк						

Для вертикальных точек

Точка	номера	n	д,м	е₁, лк	-d/h	ев, лк	пе
	светильник.	ШТ					ЛΚ
С	5.6	2	2.2	9.5	0.6286	5.97	11.94
$h=h_n-h_p=$	2.3	2	5.4	1.9	1.5429	2.93	5.86
=5.0-1.5=3.5	1	1	7.8	0.7	2.2286	1.58	1.36
∑е₅=21.66лк	4	1	6.2	1.3	1.7714	2.3	2.3
Д	1.4	2	2.2	9.5	06286	5.97	11.94
$h=h_n - h_p=$	2.5	2	5.4	1.9	1.5429	2.93	5.86
=5.0-1.5=3.5	3.6	2	9.4	0.35	2.6857	0.94	1.88
∑е₅=19.68лк							

Так как $\mathrm{Ee_{r}}^{A}$ < $\mathrm{Ee_{r}}^{B}$, то выбор ламп производим для точки A

$$F_{_{\it I}} = \frac{1000 * K_{_{\it 3}} * E_{_{\it MuH}}}{\mu * \sum_{\it e_{_{\it 2}}}^{A}} = \frac{1000 * 1.3 * 50}{1.1 * 23.0} = 2569.17$$
 лм

По таблицам светотехнических характеристик ламп накаливания выбираем лампу типа Γ 220-200 со световым потоком

$$F_{\text{ном}} = 2800 \text{ лм}$$

Определим освещённость в точке A при $F_{\text{ном}}$ =2800лм

$$E_{\phi a \kappa m} = \frac{F_{nom} * \mu * \sum_{\alpha} e_{\alpha}^{A}}{1000 * K_{3}} = \frac{2800 * 1.1 * 23.0}{1000 * 1.3} = 54.49 \, \pi \kappa$$

Определим в % насколько фактическая освещённость $E_{\phi a \kappa r}$ отличается от заданной

$$\triangle E = \frac{E_{\phi a \kappa m} - E_{M u H}}{E_{M u H}} * 100\% = \frac{54.49 - 50.0}{50} * 100 = 9.09\%$$

Допускается превышение до 20% и уменьшение до 10%.

$$F_{_{^{\pi}}} = \frac{1000 * E_{_{^{MUH}}} * K_{_{3}}}{\mu * \sum_{}^{} e_{_{B}}{}^{^{\mathcal{I}}}} = \frac{1000 * 75 * 1.3}{1.1 * 19.68} = 4503.9 \pi M$$

По таблицам выбираем лампу Г220-300 с $F_{\text{ном}}$ =4500лм

$$E_{\phi a \kappa m} = \frac{F_{nom} * \mu * \sum_{A} e_{B}^{A}}{1000 * K_{3}} = \frac{4500 * 11 * 19.68}{1000 * 1.3} = 74.93 \pi \kappa$$

$$\Delta E = \frac{79.93 - 75.0}{75.0} * 100\% = 0.09\%$$

Вывод: Так как отклонение освещенности не превышает допустимые нормы, расчет выполнен верно.